PREPARATION OF 1-NAPHTHOLS FROM ACETYLENES AND o-PHTHALALDEHYDE USING LOW-VALENT TANTALUM AND NIOBIUM,

Yasutaka Kataoka, Jiro Miyai, Makoto Tezuka, Kazuhiko Takai,* Koichiro Oshima, and Kiitiro Utimoto* Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606, Japan

<u>Summary</u>: Tantalum (or niobium)-alkyne complexes are produced by treatment of acetylenes with the low-valent tantalum (niobium) derived by zinc reduction of TaCl₅ (NbCl₅). Substituted 1-naphthols are prepared regioselectively by reaction of o-phthalaldehyde with the tantalum (or niobium)-alkyne complexes in good to excellent yields.

Recent report by Pedersen¹ about the preparation of 1-naphthol derivatives with NbCl₃(DME) prompted us to report our independent work on preparation of 1-naphthols with low-valent group 5 metals derived by reduction of TaCl₅ (or NbCl₅) with zinc.

We have already shown that unisolable niobium-alkyne complexes^{1,2} can be produced by reaction of alkynes with the low-valent niobium derived from NbCl₅ and zinc.³ Tantalum-alkyne complexes⁴ have also been produced <u>in situ</u> from acetylenes and a combination of TaCl₅ and zinc by the analogous method of the low-valent niobium.³ To examine the use of the metal-alkyne complexes as a vicinal dianion synthon,^{1,5} ophthalaldehyde was added to the reaction mixture.

Treatment of a niobium-1-dodecyne complex with o-phthalaldehyde (2 equiv) in DMEbenzene-THF at 25°C gave a mixture of three compounds having naphthalene skeleton 1, 2, 3, and 1-dodecene (4) in 237, 147, 27, and 247 yields, as shown in Eq. 1. Several additives were examined to obtain one of the naphthalene compounds in a selective manner. An addition of amines increased the production of 2-decyl-1-naphthol (2) and decreased the yield of that of 2-decylnaphthalene (1). Among those amines examined, 2,6-lutidine gave the best result.⁶ In contrast to the terminal acetylenes, internal acetylenes afforded only 2,3-disubstituted-1-naphthol derivatives without any additives.

	R ¹ 	MtlCl ₅ , Zn	2,6-lutic	tine	Сно		ţ1
	 R ²	DME, PhH 25℃, t ¹ h	25°C, 30 min 0H				`R²
Run	R ¹	R ²	Mt] ^a	Time t ¹ /h	Aldehyde equiv	Product ^b ratio	Yield Z
1 2	ⁿ C ₅ H ₁₁ -	ⁿ C ₅ H ₁₁ -	Ta Nb	0.5 10	2 2	OH R ¹	84 93
3 4	Ph –(CH ₂	Ph 2) ₁₀ -	Ta Ta	6 ^c 0.5	3 4	CL _{R²}	70 70 ^d .e
5 6	ⁿ ¢ ₆ H ₁₃ −	^{cc} 6 ^H 11 ⁻ (5)	Ta Nb	2 11	3 3	6^{OH} $7^{\text{C}_{6}\text{H}_{13}} > 98: <2$ $7^{\text{C}_{6}}$	6H13 85 ^f GH11 849
7	ⁿ C7H ₁₅ -	t _{Bu}	Ta	4.5	3		71f . h
8 9 10	^{Me} ^{nC} 6 ^H 13 ⁻	Ph Ph	Ta Ta Nb	0.5 2 12	3 3 3	0H 75:29 ¹ 75:25 9h 55:45 0H	≀ ^l 72 ^d 71 n 83
11 12	ⁿ C ₁₀ H ₂₁ - Ph	H H	Nb Nb	1 2	3 3	OH R ¹	59 ^f 31 ^f
13 14	ⁿ C ₁₀ H ₂₁ - Ph	Me ₃ Si Me ₃ Si	Ta Ta	1.5 7	3 3		88 ^f ,j 64 ^{f,j}

a) Ta: A tantalum-alkyne complex, prepared by treatment of an acetylene (1.0 mmol) with a low-valent tantalum derived from TaCl₅ (2.0 mmol) and zinc (3.0 mmol), was treated with 2,6-lutidine (4.0 mmol) and o-phthalaldehyde (3.0 mmol). Nb: Low-valent niobium was generated upon treatment of NbCl₅ (4.0 mmol) with zinc (6.0 mmol) and employed instead of the low-valent tantalum. b) Isolated yields. c) Complexation of diphenylacetylene with the low-valent tantalum was conducted at 50°C. d) HMPA (2.0 mmol) was used instead of 2,6-lutidine. e) Cyclododecene was obtained in 21% yield. f) The other regioisomer was not observed. g) Reaction of 5 with the Pedersen's niobium complex NbCl₃(DME) produced the same regioisomer 6 as a main product (6/7=86/14) in our hands. h) Four mmol of TaCl₅ and 6.0 mmol of zinc were employed. i) See ref. 10. j) Regiochemistry was ascertained by desilylation with Cf₃CO₂H (ref. 9).

However, pretreatment of the niobium-alkyne complex with 2,6-lutidine also gave the best yields. Tantalum-alkyne complexes, which was formed smoothly compared to the niobium complexes,³ reacted with o-phthalaldehyde to afford 1-naphthol derivatives.⁷ Preparation of 1-naphthols from acetylenes and o-phthalaldehyde is summarized in Table 1.

Reactions between terminal acetylenes and o-phthalaldehyde gave 2-substituted-1naphthols regioselectively⁸ and 3-substituted ones were not observed (runs 11 and 12). There is a tendency that bulky substituents occupy 3-position of the 2,3-disubstituted-1-naphthols in the case of unsymmetrically disubstituted acetylenes especially when tantalum-alkyne complexes were employed (runs 5,6, and 8-10). One of the regioisomers was produced exclusively when the bulkiness of the substituent differs greatly from the other (runs 7, 13 and 14).

Formation of 1-naphthol 13 can be explained as follows (Scheme 1). Low-valent tantalum (or niobium), generated from $TaCl_5$ (NbCl_5) and zinc, reacts with an acetylene 8 to produce a metal-alkyne complex 9. Insertion of a formyl group into a metal-carbon bond of the complex 9 gives 10. Internal coordination of the second formyl group at the suitable position of 10 facilitates the second insertion reaction leading to 11. Elimination of a metaloxy group at benzylic position of 11 takes place to generate 12, which affords 1-naphthol 13 after aqueous workup. Strong affinity of Mt1-0 bond (Mt1 = Ta or Nb)¹¹ and aromatic stabilization can be the driving force of the elimination.

Since substitution reactions of trimethylsilyl (Me_3Si-),¹² diethoxyphosphoryloxy ((EtO)₂P(0)O-),¹³ and trifluoromethanesulfonyloxy (TfO-) groups¹⁴ attached on aromatic rings are known to proceed smoothly under palladium or nickel catalysis, this method provides new access of substituted naphthalene derivatives.

Typical Procedure with TaCl₅-Zn: To a stirring pale yellow solution of $TaCl_5$ (0.72 g, 2.0 mmol) in DME-benzene (1:1, 20 mL) was added zinc (0.20 g, 3.0 mmol) at 25°C under an argon atmosphere and the mixture was stirred at 25°C for 40 min. The color of the mixture turned to greenish dark blue with slightly exothermic process. To the mixture

was added at 25°C a solution of 6-dodecyne (0.17 g, 1.0 mmol) in DME-benzene (1:1, 2 mL) and the whole mixture was stirred at 25°C for 30 min. 2,6-Lutidine (0.47 mL, 4.0 mmol) was added to the mixture. After being stirred at 25°C for 20 min, a solution of ophthalaldehyde (0.40 g, 3.0 mmol) in DME-benzene (1:1, 2 mL) was added to the mixture and the resulting mixture was stirred at 25° C for 30 min. Aqueous NaOH solution (15%, 2 mL) was added and the mixture was stirred at 25°C for additional 1 h. The deposited solid was removed by filtration with Hyflo-super Cel R and washed with ethyl acetate (3x5 mL). The filtrate and washings were concentrated. Resulting viscous solid was extracted well with hexane (5x5 mL) and the extracts were dried over Na $_2$ SO $_A$ and concentrated again. Purification by column chromatography on silica gel (ethyl acetatehexane, 1:10) gave 2,3-dipentyl-1-naphthol in 85% yield (0.24 g). Preparation of 1naphthols with low-valent niobium is almost the same as the tantalum case except the formation of niobium-alkyne complexes. See the preceding paper.³

References and Notes

- (1) J. B. Hartung, Jr., and S. F. Pedersen, <u>J. Am. Chem. Soc.</u>, 111, 5468 (1989).
- (2) (a) S. Fredericks and J. L. Thomas, <u>J. Am. Chem. Soc.</u>, **100**, 350 (1978). (b) A. C. Williams, P. Sheffels, D. Sheehan, and T. Livinghouse, <u>Organometallics</u>, **8**, 1566 (1989).
- (3) Y. Kataoka, K. Takai, K. Oshima, and K. Utimoto, <u>Tetrahedron Lett.</u>, preceding paper in this issue. The structure of the niobium and tantalum-alkyne complexes was not confirmed spectroscopically.
- (4) (a) J. A. Labinger, J. Schwartz, and J. M. Townsend, <u>J. Am. Chem. Soc.</u>, 96, 4009 (1974).
 (b) F. A. Cotton and W. T. Hall, <u>Inorg. Chem.</u>, 19, 2352 (1980).
 (c) M. D. Curtis and J. Real, <u>J. Am. Chem. Soc.</u>, 108, 4668 (1986).
 (d) J. R. Strickler, P. A. Wexler, and D. Wigley, <u>Organometallics</u>, 7, 2067 (1988).
- (5) For a review, see: A. Maercker and M. Theis, Top. Curr. Chem., 138, 1 (1987).
- (6) Additives and the yields (%) of the four compounds 1, 2, 3, and 4 are as follows (conditions: 1-dodecyne (1.0), o-phthalaldehyde (2.0), NbCl₅ (4.0), Zn (6.0), DME-benzene-THF (1:1:1), 25°C, 30 min): HMPA (4.0), 8, 50, 11, 27; TMEDA (4.0), 2, 45, 5, 22; Et₃N (4.0), 4, 45, 7, 11; pyridine (8.0), 0, 45, 7, 7; 2,6-lutidine (8.0), 0, 53, 5, 22; 2,6-lutidine (8.0)-o-phthalaldehyde (3.0), 0, 59, 4, 14.
- (7) Tantalum-alkyne complexes add to carbonyl compounds in a one to one fashion to afford (E)-allylic alcohols stereoselectively. Submitted for publication.
- (8) M. Watanabe, S. Hisamatsu, H. Hotokezaka, and S. Furukawa, <u>Chem. Pharm. Bull.</u>, 34, 2810 (1986).
- (9) R. L. Funk and K. P. C. Vollhardt, <u>J. Am. Chem. Soc.</u>, 1980, 102, 5253.
- (10) The authentic samples were prepared according to the following reference. M. F. Semmmelhack, S. Ho, M. Steigerwald, and M. C. Lee, <u>J. Am. Chem. Soc.</u>, **109**, 4397 (1987).
- (11) J. A. Kerr and A. F. Trotman-Dickenson, "Strength of Chemical Bonds," in CRC Handbook of Chemistry and Physics, CRC Press Inc., Cleveland.
- (12) For the wide use of aryltrimethylsilanes in synthesis, see: (a) E. Colvin, "Silicon in Organic Synthesis," Butterworths, London, 1981, p.125. (b) W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer, Berlin, 1983, p. 114.
- (13) T. Hayashi, Y. Katsuro, Y. Okamoto, and M. Kumada, <u>Tetrahedron</u> <u>Lett.</u>, 22, 4449 (1981).
- (14) S. Cacchi, P. G. Ciattini, E. Morera, and G. Ortar, <u>Tetrahedron Lett.</u>, 27, 3931, 5541 (1986).

(Received in Japan 25 September 1989)